首页

欢迎

 

Welcome

欢迎来到这里, 这是一个学习数学、讨论数学的网站.

转到问题

请输入问题号, 例如: 2512

IMAGINE, THINK, and DO
How to be a scientist, mathematician and an engineer, all in one?
--- S. Muthu Muthukrishnan

Local Notes

Local Notes 是一款 Windows 下的笔记系统.

Local Notes 下载

Sowya

Sowya 是一款运行于 Windows 下的计算软件.

详情

下载 Sowya.7z (包含最新版的 Sowya.exe and SowyaApp.exe)


注: 自 v0.550 开始, Calculator 更名为 Sowya. [Sowya] 是吴语中数学的发音, 可在 cn.bing.com/translator 中输入 Sowya, 听其英语发音或法语发音.





注册

欢迎注册, 您的参与将会促进数学交流. 注册

在注册之前, 或许您想先试用一下. 测试帐号: usertest 密码: usertest. 请不要更改密码.


我制作的 slides

Problem

随机显示问题

Problèmes d'affichage aléatoires

趣味数学 >> 数学竞赛
Questions in category: 数学竞赛 (Mathematical Competition).

若 $a,b,c$ 是不全相等的实数, 且 $a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}=k$, 证明: $abc+k=0$.

Posted by haifeng on 2018-10-03 23:36:21 last update 2023-02-13 15:56:50 | Answers (1)


若 $a,b,c$ 是不全相等的实数, 且 $a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}=k$, 证明: $abc+k=0$.

 

 

Remark: 题目由 David Chen 提供.

类似问题: 3073


 

Question: 能否推广到 $n$ 个数? 即下面的命题是否成立?

 

命题: 设 $a_1,a_2,\ldots,a_n$ 是 $n$ 个不全相等的实数, 这里$n\geqslant 3$, 且满足关系式

\[
a_1+\frac{1}{a_2}=a_2+\frac{1}{a_3}=a_3+\frac{1}{a_4}=\cdots=a_{n-1}+\frac{1}{a_n}=a_n+\frac{1}{a_1}=k,
\]

\[
k+\prod_{i=1}^{n}a_i=0.
\]